Lycée Kheniss	Devoir de contrôle N°3	<u>Prof</u> :
	Mathématiques Durée : 2h	4 éme Sc.Exp

EXERCICE N°4

1) On dispose de deux urnes : U_1 contenant 3 boules blanches et 2 noires U_2 contenant 1 boule blanche et 4 noires

On tire au hasard et simultanément 2 boules de U_1 et successivement et sans remise 3 boules de U_2 .

On désigne par X l'aléa numérique égal au nombre de boules blanches tirées.

- a) Montrer que p (« X= 0 ») = 1/25 puis déterminer la loi de probabilité de X.
- b) Calculer E(X) et V(X)
- 2) On répète l'épreuve précédente 4 fois de suite en remettant à chaque fois les boules dans leurs urnes respectives.

Calculer la probabilité de chacun des évènements suivants :

A: « obtenir trois fois 5 boules noires »

B: « obtenir pour la première fois 5 boules noires au troisième tirage ».

3) On considère maintenant n urnes (n \geq 3). L'urne U₁ contient 3 boules blanches et 2 noires et chacune des autres urnes contient 1 blanche et 4 noires.

On tire une boule de U_1 que l'on met dans U_2 , puis une boule de U_2 que l'on met dans U_3 et ainsi de suite jusqu'à tirer une boule de l'urne U_n .

Soit E_k l'évènement : « la boule tirée de U_k est blanche » $(1 \le k \le n)$

- a) Calculer $p_1 = p(E_1)$ et $p_2 = p(E_2)$
- b) Soit $p_k = p(E_k)$. Montrer que $p_{k+1} = \frac{1}{6}p_k + \frac{1}{6}$.

En déduire que
$$p_k = \frac{2}{5} (\frac{1}{6})^{k-1} + \frac{1}{5}$$

PROBLEME

- **I)** On considère la fonction g définie sur IR par $g(x) = e^x x$
- 1) Etudier les variations de g. Calculer g (0)
- **2)** On pose $f(x) = \frac{e^x}{e^x x}$
 - a) En déduire à partir des variations de g que f est définie sur IR et que $\forall x \in IR$, f(x) > 0
 - b) Calculer les limites de f en (-∞) et en (+∞). Interpréter graphiquement ces résultats
 - c) Etudier la position de (C_f) par rapport à la droite D : y =1 pour x \geq 0.
- **3)** Etudier les variations de f et construire (C_f) dans un repère orthonormé $R = (O, \vec{i}, \vec{j})$ (Unité graphique : 2cm)
- **II)** On pose $U_n = \int_0^n f(x) dx$, $n \in IN$
- 1) Donner une interprétation géométrique de U_n
- 2) Etudier la monotonie de la suite (U_n)
- **3)** a) Montrer que pour tout réel x, $f(x) = 1 + \frac{x}{e^x x}$
 - b) Montrer que pour tout entier $n \in IN$, $U_n = n + \int_0^n \frac{x}{e^x x} dx$
 - c) En déduire $\lim_{n\to+\infty} U_n$
- **III)** Soit (V_n) la suite définie par V_n = U_n n = $\int_0^n \frac{x}{e^x x} dx$
- 1) Montrer que (V_n) est une suite croissante.
- **2)** a) Montrer que pour tout $x \ge 0$, on a : $e^x x \ge \frac{e^x}{2}$
 - b) En déduire que pour tout $n \in IN$, $V_n \le \int_0^n 2xe^{-x} dx$
 - c) Calculer $\int_0^n 2xe^{-x} dx$ en fonction de n.
 - d) En déduire que, pour tout $n \in IN$, $V_n \le 2$.
- 3) En déduire que la suite (V_n) est convergente.

BON TRAVAIL